skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cambronero-Solano, Sergio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The strengthening and enhancement of capacity are stated goals of several international ocean law and policy instruments that focus on biodiversity conservation, fisheries management, sustainable development, pollution, mineral extraction, traditional knowledge, and ocean science. Yet, achieving these goals has proved elusive, as illustrated by persisting divides in capacity and technology (Amon et al., 2022a; Bell et al., 2023). This has led to the emergence of new terminology, such as capacity sharing, which reflects the need for evolving practices away from unidirectional approaches and toward equitable partnerships (Harden-Davies et al., 2022) that recognize the value of existing knowledge (scientific or not), as well as practices and values held by a community (Spalding et al., 2023). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Leading deep-sea research expeditions requires a breadth of training and experience, and the opportunities for Early Career Researchers (ECRs) to obtain focused mentorship on expedition leadership are scarce. To address the need for leadership training in deep-sea expeditionary science, the Crustal Ocean Biosphere Research Accelerator (COBRA) launched a 14-week virtual Master Class with both synchronous and asynchronous components to empower students with the skills and tools to successfully design, propose, and execute deep-sea oceanographic field research. The Master Class offered customized and distributed training approaches and created an open-access syllabus with resources, including reading material, lectures, and on-line resources freely-available on the Master Class website (cobra.pubpub.org). All students were Early Career Researchers (ECRs, defined here as advanced graduate students, postdoctoral scientists, early career faculty, or individuals with substantial industry, government, or NGO experience) and designated throughout as COBRA Fellows. Fellows engaged in topics related to choosing the appropriate deep-sea research asset for their Capstone “dream cruise” project, learning about funding sources and how to tailor proposals to meet those source requirements, and working through an essential checklist of pre-expedition planning and operations. The Master Class covered leading an expedition at sea, at-sea operations, and ship-board etiquette, and the strengths and challenges of telepresence. It also included post-expedition training on data management strategies and report preparation and outputs. Throughout the Master Class, Fellows also discussed education and outreach, international ocean law and policy, and the importance and challenges of team science. Fellows further learned about how to develop concepts respectfully with regard to geographic and cultural considerations of their intended study sites. An assessment of initial outcomes from the first iteration of the COBRA Master Class reinforces the need for such training and shows great promise with one-quarter of the Fellows having submitted a research proposal to national funding agencies within six months of the end of the class. As deep-sea research continues to accelerate in scope and speed, providing equitable access to expedition training is a top priority to enable the next generation of deep-sea science leadership. 
    more » « less
  3. Abstract In the Eastern Tropical North Pacific Oxygen Minimum Zone (ETNP‐OMZ), fish larvae undergo development amidst highly variable dissolved oxygen environments. As OMZs expand, understanding the implications of low‐oxygen environments on fish development becomes increasingly relevant for fisheries management and ecosystem modeling. Using horizontal zooplankton tows to track five oxygen levels (oxic [200 μmol/kg], hypoxic [100 μmol/kg] suboxic [10 μmol/kg], anoxic [<1 μmol/kg], and deep [10 μmol/kg at ~ 1000 m depth]), this study analyzed the three‐dimensional distribution of fish larvae and adults across the ETNP‐OMZ. Results revealed a wide midwater anoxic core, extending from Costa Rica to Baja California, that was almost devoid of fish larvae (< 1 larvae/1000 m3). Early larval stages primarily inhabited the oxic and hypoxic levels above the core, while postflexion and transformation stages occurred across a wider oxygen gradient, including the deep level below the anoxic core. Epipelagic species (e.g.,Auxissp.) were predominantly found in the surface oxic level, whereas coastal‐demersal species (e.g.,Bregmaceros bathymaster,Ophidionspp.) were prevalent in the hypoxic level above the core. Meso‐bathypelagic species (e.g.,Diogenichthys laternatus,Cyclothonespp.) were present throughout the study area, including below the anoxic core as transformation larvae and juveniles. These findings indicate that a vertical expansion of anoxic waters in OMZs could further constrain the habitat of epipelagic species, while also affecting the ontogenic vertical movements of meso‐bathypelagic species. 
    more » « less